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Numerical simulation of rotating convection in plane layers with free slip boundaries show that the convec-
tive flows can be classified according to a quantity constructed from the Reynolds, Prandtl, and Ekman
numbers. Three different flow regimes appear: laminar flow close to the onset of convection, turbulent flow in
which the heat flow approaches the heat flow of nonrotating convection, and an intermediate regime in which
the heat flow scales according to a power law independent of thermal diffusivity and kinematic viscosity.
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It is a central problem for many areas of geophysics and
astrophysics to determine the heat flux through a rotating and
convecting fluid layer. For example, the heat flux through the
atmosphere governs weather and climate, the heat flux
through stellar atmospheres determines stellar evolution, and
the heat flux through planetary cores is essential for the gen-
eration of the magnetic fields of these bodies. A correspond-
ingly large effort has already been spent on the problem.
Buoyancy is driving the flow and can be balanced by either
viscous or Coriolis force, or the nonlinear terms in the equa-
tions of motion, or any combination of these. If the Coriolis
force dominates the dynamics, a special type of boundary
layer appears near solid boundaries, the Ekman layers, in
which the viscous force is balanced by the Coriolis term. In
addition, the flow in the bulk is organized into columnar
vortices with their axes aligned with the rotation axis. If
on the contrary nonlinear advection supersedes the Coriolis
term, these columns are broken up and the style of flow
known from nonrotating convection is approached �1–3�.
There is an ongoing debate concerning the parameters at
which the transition between these two flow regimes occurs
�3–5�, and we are still lacking reliable relations between the
heat flux and the control parameters of the flow that would
allow us to extrapolate data from laboratory experiments and
numerical simulation to astrophysical objects.

Some recent works on rotating convection have focused
on the Ekman layers. For instance, Ref. �3� relates the Ek-
man layers to the transition mentioned above. Despite the
inhibiting effect of rotation on turbulence, the heat flux in a
rotating flow can exceed that of a nonrotating flow at equal
Rayleigh number �6�. In Ref. �7�, this phenomenon is attrib-
uted to the so-called Ekman pumps, a term reserved for a
certain flow pattern associated with Ekman boundary layers
�8�. Here, we investigate convection with free slip boundary
conditions. This eliminates Ekman layers and one can dis-
cern which effect really depends on their presence. Free slip
boundaries are realized to a good approximation in nature,
for example, at the surface of the oceans or at the top of
atmospheric layers.

Consider a plane layer of thickness d in the z direction
and of infinite extent in the �x ,y� plane. Let the layer be
filled with fluid of kinematic viscosity �, thermal diffusivity
�, and thermal expansion coefficient �. Gravitational accel-
eration g is pointing in the negative z direction and the layer
is rotating with an angular velocity � about the z axis. The
temperatures of the top and the bottom boundaries are fixed

at T0 and T0+�T, respectively. These two boundaries are
assumed to be free slip, whereas periodic boundary condi-
tions are applied in the x and the y directions. The equations
of evolution are made nondimensional by using d2 /�, d, and
�T for units of time, length, and temperature, respectively.
These equations then become within the Boussinesq approxi-
mation for the dimensionless velocity v�r , t� and temperature
T�r , t�

�tv + �v · ��v + 2
Pr

Ek
ẑ � v = − �p + Pr �2v + Ra Pr Tẑ ,

�1�

� · v = 0, �2�

�tT + v · �T = �2T , �3�

where ẑ is the unit vector in the z direction and p collects the
pressure and the centrifugal acceleration. The boundary con-
ditions require that T�z=0�=1, T�z=1�=0, and that
vz=�zvx=�zvy =0 at both z=0 and z=1. Three independent
dimensionless control parameters appear: the Rayleigh num-
ber Ra, the Ekman number Ek, and the Prandtl number Pr.
They are defined as

Ra =
g��Td3

��
, Ek =

�

�d2 , Pr =
�

�
. �4�

The Reynolds number Re and the Nusselt number Nu are an
output of the simulations,

Re =
1

Pr
�1

V
� �v2�dV, Nu = −

1

A
� ��zT�dA . �5�

The angular brackets denote average over time and the inte-
grals extend over the computational volume V for Re and
over the surface A of either the top or the bottom boundary
for Nu.

The equations of motion were solved with the same spec-
tral method as used in �9�, except that free slip boundaries
were implemented and that the Coriolis term was added and
treated implicitly together with the diffusion terms. Resolu-
tions reached up to 129 Chebychev polynomials for the dis-
cretization of the z coordinate and 256�256 Fourier modes
in the �x ,y� plane. The periodicity lengths along the x and
the y directions were always chosen to be identical. The as-
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pect ratio, defined as the ratio of the periodicity length in the
�x ,y� plane and the layer height, was fixed at 10 for simula-
tions without rotation. In rotating convection, the typical size
of flow structures varies considerably as a function of the
control parameters, so that it is not useful to use a single
aspect ratio. Instead, the aspect ratio was adjusted for each
Ek to fit at least eight columnar vortices along both the x and
the y directions at the onset of convection and kept constant
as Pr and Ra were varied.

Figure 1 shows Nu as a function of Ra for various Ek and
two different Pr. The case of zero rotation is included for
comparison. The basic features visible in this figure are
known from previous experiments and simulations
�1,3,6,10�. The onset of convection is delayed by rotation.
After the onset, Nu rises more steeply as a function of Ra
than in the nonrotating case. Nu does not follow any simple
power law in this range of Ra. For large enough Ra, the Nu
dependence asymptotes toward the dependence valid for zero
rotation, which is well approximated by a power law in the
investigated range of Ra.

All the different curves in Fig. 1 collapse to a single
curve in most of the parameter range when �Nu−1�Ek1/3

is plotted as a function of Re Pr Ek1/2 as shown in
Fig. 2. For large values of Re Pr Ek1/2 one finds
�Nu−1�Ek1/3	 �Re Pr Ek1/2�2/3 or �Nu−1�	 �Re Pr�2/3. This
law is independent of Ek as it should be: at any fixed Ek and
Pr, the limit of large Re corresponds to the situation in which
the nonlinear term dominates the Coriolis term, so that one
has to recover the behavior of nonrotating convection, which
is of course independent of Ek. The data for zero rotation
cannot be included in Fig. 2 because Ek has no finite value in
this case, but �Nu−1�	 �Re Pr�2/3 is also found for strictly
zero rotation.

Low values of Re Pr Ek1/2 on the other hand correspond
to laminar flows near the onset of convection. Forming the
dot product of Eq. �1� and v, integrating over the whole
volume, and averaging over time, one finds


 = �Nu − 1�Ra, �6�

where 
= 1
V	���iv j���iv j��dV is the adimensional average dis-

sipation rate of kinetic energy. In a laminar flow, one expects

	 �Re Pr�2 /�2, where � is a characteristic length scale of the
flow. For Pr�0.676, convection starts at a critical Rayleigh
number Rac obeying Rac	Ek−4/3 and forms stationary cells
of size �c with �c	Ek1/3 �11�. Equation �6� becomes
Ek−2/3 Re2 Pr2	 �Nu−1�Ra. Close to onset, Ra
Rac and
therefore �Nu−1�	Re2 Pr2 Ek2/3. This corresponds to the
left asymptote in Fig. 2. Both the left asymptote and
�Nu−1�	 �Re Pr�2/3 become straight lines in a logarithmic
plot of �Nu−1�Ek1/3 vs Re Pr Ek1/2, which explains the
simple appearance of Fig. 2.

Figure 2 in summary identifies three regimes of rotating
convection. Rotating laminar flow characterizes one of them,
and heat transport behaves the same as in nonrotating con-
vection in another. The transition occurs where the two as-
ymptotes in Fig. 2 cross, i.e., at Re Pr Ek1/2=2. There is a
transition interval around this point of about one decade in
width in which Nu is close to neither asymptote. This third
regime will receive detailed attention below.

Even though Nu behaves as if there was no rotation for
Re Pr Ek1/2�10 in Fig. 2, visualizations of the flow still re-
veal differences. In the rotating case, the flow forms colum-
nar vortices extending from one boundary to the other,
whereas for zero rotation, plumes advected by a large-scale
circulation are observed. Enough visualizations of vortices in
rotating convection have already appeared �1–3�, so that
there is no need to reproduce any here. The size of the vor-
tices can be quantified by the method already used in �9�:
compute the time averaged advective heat transport through
the plane z=0.5, �vz�, with =T−1 /2; compute the Fou-
rier transform of �vz�; and plot the spectrum of �vz� as a
function of wavelength � �see �9� for detailed formulas�. The
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FIG. 1. �Color online� Nu as a function of Ra for Pr=7 �red
symbols and continuous line� and 0.7 �blue symbols and dotted-
dashed line� and Ek=2�10−2 �diamonds�, 2�10−3 �squares�,
2�10−4 �triangles�, and 2�10−5 �stars�. Zero rotation is indicated
by circles and the power-law fits have an exponent of 0.287.
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FIG. 2. �Color online� �Nu−1�Ek1/3 as a function of Re Pr Ek1/2

for the same data and with the same symbols as in Fig. 1. The
dashed lines are power laws with exponents of 2 and 2/3. The two
vertical lines indicate the interval outside of which the fit to one of
the two power laws is considered satisfactory.
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median wavelength �m is extracted from the spectra, such
that the heat advected at wavelengths smaller than �m equals
the heat advected at larger wavelengths. The value of �m /2
matches the diameter of the columnar vortices identified vi-
sually in the flow field. Figure 3 shows �m Ek−1/3 as a func-
tion of Re Pr Ek1/2. It is seen that �m stays at the onset wave-
length �c well into the transition interval and decreases at
high Re Pr Ek1/2. This decrease follows �m	 �Re Pr�−1/2 at
fixed Ek, which is compatible with experimental data in �12�.

Near the onset of convection, the heat transport is deter-
mined by a balance among buoyancy, Coriolis, and diffusive
terms. For high Re Pr Ek1/2, the Coriolis term is over-
whelmed by the nonlinear term in Eq. �1�, so that Nu is the
same as in turbulent nonrotating convection. Diffusive pro-
cesses play a role because all heat has to cross the thermal
boundary layers diffusively. Let us assume as a working hy-
pothesis that the heat flow in the intermediate regime is gov-
erned by a competition between the nonlinear and the Cori-
olis terms, and that the constraints imposed by rotation on
the flow structure control the heat flux, not the diffusion in
the boundary layers. The dimensional heat flow Q must then
be given by an expression independent of � and �. In order
to check this hypothesis, it is convenient to use a control
parameter independent of � and �. The only combination of
Ra, Ek, and Pr meeting this requirement is Ra�=Ra Ek2 /Pr
=g��T / ��2d�. An appropriate measure of heat flux indepen-
dent of � and � is Nu�=Nu Ek /Pr=Q / ��cp�T�d�, in which
� stands for the density and cp stands for the heat capacity.

It is useful to replace Ra� with the flux Rayleigh number
Raf� given by Raf�=Ra�Nu�= �g�Q� / ��cp�3d2�. This combi-
nation is strictly speaking a control parameter only when
Neumann conditions are imposed on the temperature field,
which was not the case in our simulations. However, a pa-
rameter based on Q instead of �T is preferable in astrophysi-
cal applications because heat fluxes are better constrained by
observations than vertical temperature differences. We will
therefore seek a relation between Nu� and Raf�. Furthermore,
in a flow dominated by rotation, which is necessarily nearly
two dimensional, it seems plausible that heat flow through a

plane z=const should be determined solely by the dynamics
in that plane. Q would then be independent of the layer
height d. If our working hypothesis is correct that Q is inde-
pendent of � and �, and assuming that Nu� is given by a
power law, one has to find a scaling of the form Nu�	Raf�

� . If
in addition Q is independent of d, one has to find �=1 /2.

Figure 4 shows Nu� as a function of Raf�. The figure
contains only those points for which 0.5�Re Pr Ek1/2�10.
This transition interval is small and does not corroborate any
power law Nu�	Raf�

� at fixed Ek and Pr. However, the data
for different Ek and Pr collectively define an envelope which
we regard to be the genuine scaling obeyed by the Nusselt
number in the transition regime. The best fit to the data in
Fig. 4 yields

Nu� = 0.11 Raf�
0.55. �7�

The exponent �=0.55�0.01 is measurably different from
1/2. There is some scatter in the points in Fig. 4 around the
power law �7�. This scatter can be reduced by retaining data
from a smaller interval of Re Pr Ek1/2, so that the data are
less affected by scalings valid in the neighboring intervals.

Reference �13� investigates thermal convection in a rotat-
ing spherical shell. In this geometry, convection occurs
mostly outside a cylinder tangent to the inner core and co-
axial with the rotation axis, whereas the flow velocities are
much smaller inside the tangent cylinder. Gravitational ac-
celeration varies radially in the simulations in Ref. �13� and
there is a zonal flow along circles of constant latitude, which
has no analog in our simulations. Despite all these differ-
ences, the heat flux in the spherical geometry obeys Nu�

=0.077 Raf�
5/9 according to Ref. �13� and the best fit to a

compilation of data in Ref. �14� yields Nu�=0.08 Raf�
0.55. The

exponent in Eq. �7� appears to be very robust.
It is also interesting to draw a parallel with dimensional

arguments for nonrotating convection �15�. If the heat trans-
fer is independent of the layer thickness because it is deter-
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FIG. 3. �Color online� �mEk−1/3 as a function of Re Pr Ek1/2.
The symbols have the same meaning as in Fig. 1. The dashed lines
indicate power laws with exponents of 0 and −1 /2.
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FIG. 4. �Color online� Nu� as a function of Raf�. The symbols
have the same meaning as in Fig. 1. This figure contains only those
data points which lie in the interval marked by vertical lines in
Fig. 2.
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mined by boundary layer dynamics, Nu has to behave like
Nu	Ra1/3. This exponent is generally not observed experi-
mentally because of the presence of a large-scale circulation.
The assumption that heat transport is independent of thermal
diffusivity and kinematic viscosity leads without rotation to
Nu	 �Ra Pr�1/2. While this scaling has been found in simula-
tions avoiding boundary layers �16�, it remains elusive in any
bounded geometry. In rotating convection, Fig. 4 shows that
a power law independent of diffusivities is a useful fit to the
data, but the heat flow still depends on the layer depth.

In summary, three different regimes of convection could
be identified as functions of Re Pr Ek1/2. For small and large
values of Re Pr Ek1/2, one approaches asymptotically the
scalings valid for rotating convection near onset and nonro-
tating convection, respectively. The crossover occurs in a
transition interval around Re Pr Ek1/2=2. This contradicts the
naive expectation that the transition should occur when the

Rossby number Ro=Re Ek equals 1. Even though Re is not
a control parameter, the transition criterion is useful when
observations yield some information about the flow veloci-
ties in a celestial body. A case in point is the Earth’s core, for
which magnetic secular variations provide us with estimates
of typical flow velocities around 5�10−4 m /s. Together
with �=7.29�10−5 s−1 and the generally accepted material
properties inside the core of �=3�10−6 m2 /s and �=5
�10−7 m2 /s �17�, one finds Re Pr Ek1/2
5, which places
the Earth’s core inside the transition interval. If on the other
hand the Earth’s core is driven by compositional convection,
a diffusivity of 7�10−9 m2 /s should be used �17�, leading
to Re Pr Ek1/2
6�103.
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